Tirat, A., et al. Synthesis and characterization of fluorescent ubiquitin derivatives as highly sensitive substrates for the deubiquitinating enzymes UCH-L3 and USP-2. Anal. Biochem. 343, 244-255 (2005).

http://www.ncbi.nlm.nih.gov/pubmed/15963938

View FileA. Tirat et al.   Size: (4 KB)

Altun, M., et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401-1412 (2011). 

http://www.ncbi.nlm.nih.gov/pubmed/22118674

View FileAltun et al.   Size: (4 KB)

Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 127, E1983-1992 (2015) DOI: 10.1073/pnas.1512094113 

View FileBai et al.   Size: (4 KB)

Basters, A., et al. Molecular characterization of ubiquitin-specific protease 18 reveals substrate specificity for interferon-stimulated gene 15. Febs. J. 281, 1918-1928 (2014). 

http://www.ncbi.nlm.nih.gov/pubmed/24533902

View FileBasters et al.   Size: (4 KB)

Berkers, C.R., et al. Profiling proteasome activity in tissue with fluorescent probes. Mol. Pharm. 739, 739-748 (2007). 

http://www.ncbi.nlm.nih.gov/pubmed/17708652

View FileBerkers et al.   Size: (4 KB)

Berkers, C.R., et al. Probing the specificity and activity profiles of the proteasome inhibitors bortezomib and delanzomib. Mol. Pharm. 9, 1126-1136 (2012).

http://www.ncbi.nlm.nih.gov/pubmed/22432738

View FileBerkers et al.   Size: (4 KB)

Bingol, B., et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375 (2014). 

http://www.ncbi.nlm.nih.gov/pubmed/24896179

View FileBingol et al.   Size: (4 KB)

Borodovsky, A., et al. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187-5196 (2001).

http://www.ncbi.nlm.nih.gov/pubmed/11566882

View FileBorodovsky et al.   Size: (4 KB)

Borodovsky, A., et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149-1159 (2002). 

http://www.ncbi.nlm.nih.gov/pubmed/12401499

View FileBorodovsky et al.   Size: (4 KB)

Dang, L.C., et al.Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry. 37, 1868-1879 (1998).

http://www.ncbi.nlm.nih.gov/pubmed/9485312

View FileDang, L.C., et al   Size: (4 KB)

de Jong, A., et al. Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes. ChemBiochem 13, 2251-2258 (2012). 

http://www.ncbi.nlm.nih.gov/pubmed/23011887

View Filede Jong et al.   Size: (4 KB)

Ekkebus, R., et al. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc. 135, 2867-2870 (2013). 

http://www.ncbi.nlm.nih.gov/pubmed/23387960

View FileEkkebus et al.   Size: (4 KB)

El Oualid, F., et al. Chemical Synthesis of Ubiquitin, Ubiquitin-Based Probes, and Diubiquitin. Angewandte Chemie Int. Ed. 49, 10149-10153 (2010).

http://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileF. El Oualid et al.   Size: (4 KB)

Faesen, A.C., et al. The Differential Modulation of USP Activity by Internal Regulatory Domains, Interactors and Eight Ubiquitin Chain Types. Chem. Biol. 18, 1550-1561 (2011). 

http://www.ncbi.nlm.nih.gov/pubmed/22195557 

View FileFaesen et al.   Size: (4 KB)

Reddy, G.R., et al. Robust Light Emission from Cyclic Alkylaminoluciferin Substrates for Firefly Luciferase. J. Am. Chem. Soc. 132, 13586–13587 (2010). 

http://www.ncbi.nlm.nih.gov/pubmed/20828122

View FileG. R. Reddy et al.,   Size: (4 KB)

Galardy, P., et al. Mechanism-based proteomics tools based on ubiquitin and ubiquitin-like proteins: crystallography, activity profiling, and protease identification. Methods in Enzymology. 399, 120-131 (2005).

http://www.ncbi.nlm.nih.gov/pubmed/16338352

 

View FileGalardy et al.   Size: (4 KB)

Geurink, P.P., et al. A general chemical ligation approach towards isopeptide-linked ubiquitin and ubiquitin-like assay reagents. ChemBiochem 13, 293-297 (2012).  

http://www.ncbi.nlm.nih.gov/pubmed/22213387

View FileGeurink and El Oualid et al.   Size: (4 KB)

A general chemical ligation approach towards isopeptide-linked ubiquitin and ubiquitin-like assay reagents. 

Chembiochem. 13 (2): 293-297. (2012), DOI:10.1002/cbic.201100706.

View FileGeurink et al.   Size: (4 KB)

Haj-Yahya, N., et al. Dehydroalanine-based diubiquitin activity probes. Org. Lett. 16, 540-543 (2014). 

http://www.ncbi.nlm.nih.gov/pubmed/24364494

View FileHaj-Yahya et al.   Size: (4 KB)

Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. eLIFE. 10 7554 (2016). DOI: 10.7554/eLife.18919

View FileHanneke Vlaming et al.    Size: (4 KB)

Huang, X. & Aulabaugh A. Application of fluorescence polarization in HTS assays. Methods in Molecular Biology 565, 127-143 (2009).

http://www.ncbi.nlm.nih.gov/pubmed/19551360

View FileHuang et al.   Size: (4 KB)

Dikic, I., et al. Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell. Biol. 10, 659-671 (2010). 

http://www.ncbi.nlm.nih.gov/pubmed/19773779

View FileI. Dikic et al.   Size: (4 KB)

Engels, I.H., et al. A time-resolved fluorescence resonance energy transfer-based assay for DEN1 peptidase activity. Anal. Biochem. 390, 85-87 (2009). 

http://www.ncbi.nlm.nih.gov/pubmed/19328766

View FileI. H. Engels et al.   Size: (4 KB)

Iphöfer, A., et al. Profiling ubiquitin linkage specificities of deubiquitinating enzymes with branched ubiquitin isopeptide probes. Chembiochem 13, 1416-1420 (2012). 

http://www.ncbi.nlm.nih.gov/pubmed/22689415

View FileIphöfer et al.   Size: (4 KB)

Licchesi, J.D., et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat. Struct. Mol. Biol. 19, 62-71 (2012). 

http://www.ncbi.nlm.nih.gov/pubmed/22157957

View FileJ. D. F. Licchesi et al.   Size: (4 KB)

An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 127, E1763-E1772 (2015),  DOI: 10.1073/pnas.1423319112

View FileJastrab, J. B., et al.   Size: (4 KB)

Keusekotten, K., et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312-1326 (2013). 

http://www.ncbi.nlm.nih.gov/pubmed/23746843

View FileKeusekotten et al.   Size: (4 KB)

Lavis, L.D., et al. Fluorogenic label for biomolecular imaging. ACS Chem. Biol. 1, 252-260 (2006). 

http://www.ncbi.nlm.nih.gov/pubmed/17163679

View FileLavis et al.   Size: (4 KB)

Levine, L.M., et al. Measurement of specific protease activity utilizing fluorescence polarization. Anal. Biochem. 247, 83-88 (1997). 

http://www.ncbi.nlm.nih.gov/pubmed/9126375

View FileLevine et al.   Size: (4 KB)

Li, G., et al. Activity-based diubiquitin probes for elucidating the linkage specificity of deubiquitinating enzymes. Chem. Commun. 20, 216-218 (2014).

http://www.ncbi.nlm.nih.gov/pubmed/24225431

View FileLi et al.   Size: (4 KB)

McGouran, J.F., et al. Deubiquitinating enzyme specificity for ubiquitin chain topology profiled by di-ubiquitin activity probes. Chem. Biol. 20, 1447-1455 (2013). 

http://www.ncbi.nlm.nih.gov/pubmed/24290882

View FileMcGouran et al.   Size: (4 KB)

Misaghi, S., et al. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate. J. Biol. Chem. 280, 1512-1520 (2005). 

http://www.ncbi.nlm.nih.gov/pubmed/15531586

View FileMisaghi et al.   Size: (4 KB)

Mulder, M.P., et al. A native chemical ligation handle that enables the synthesis of advanced activity-based probes: diubiquitin as a case study. ChemBiochem 15, 946-949 (2014).

http://www.ncbi.nlm.nih.gov/pubmed/24623714

View FileMulder & El Oualid et al.   Size: (4 KB)

Mulder, A., et al. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes. Nat. Chem. Biol. 2016. 16 May Advance Online Publication

DOI: 10.1038/NCHEMBIO.2084

View FileMulder, A., et al.   Size: (4 KB)
View FileNow Hiring: Researcher for Drug Discovery Laboratory    Size: (339.7 KB)

press release 20170220: Mercachem and UbiQ join forces to tackle SUMOylation.

View Filepress release 20170220

Ubiquigent announces collaboration with UbiQ

View Filepress release:    Size: (49.39 KB)

Industry Alliance announces collaboration with UbiQ

View Filepress release:    Size: (89.62 KB)

Avacta announces a collaboration with UbiQ

View Filepress release:    Size: (142.01 KB)
View FilePrivacy Policy

Horton, R.A., et al. A substrate for deubiquitinating enzymes based on time-resolved fluorescence resonance energy transfer between terbium and yellow fluorescent protein. Anal. Biochem. 360, 138-143 (2007). 

http://www.ncbi.nlm.nih.gov/pubmed/17118327

View FileR. A. Horton et al.   Size: (4 KB)

Rivkin, E., et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318-324 (2013). 

http://www.ncbi.nlm.nih.gov/pubmed/23708998

View FileRivkin et al.   Size: (4 KB)

Orcutt, S.J., et al. Bioluminescence Assay Platform for Selective and Sensitive Detection of Ub/Ubl Proteases. Biochim. Biophys. Acta. 1823, 2079-2086 (2012). 

http://www.ncbi.nlm.nih.gov/pubmed/22705352

View FileS.J. Orcutt et al.   Size: (4 KB)

Sheng, Y., et al. Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat. Struct. Mol. Biol. 13, 285-291 (2006). 

http://www.ncbi.nlm.nih.gov/pubmed/16474402

View FileSheng et al.   Size: (4 KB)

Smit, J.J. et al. Target specificity of the E3 ligase LUBAC for ubiquitin and NEMO relies on different minimal requirements. J. Biol. Chem. 288, 31728-31737 (2013).

http://www.ncbi.nlm.nih.gov/pubmed/24030825

View FileSmit et al.   Size: (4 KB)

Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell. 27 731-744 (2007). DOI: 10.1016/j.molcel.2007.06.033

View FileSmith DM et al.   Size: (4 KB)

ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell. 20 687-698 (2005). DOI: 10.1016/j.molcel.2005.10.019

View FileSmith DM et al.   Size: (4 KB)

Sommer, S., et al. Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition. Bioorg. Med. Chem. 21, 2511-2517 (2013). 

http://www.ncbi.nlm.nih.gov/pubmed/23535560

View FileSommer et al.   Size: (4 KB)

Terentyeva, T.G., et al. Morpholinecarbonyl-Rhodamine 110 based substrates for the determination of protease activity with accurate kinetic parameters. Bioconj. Chem. 22, 1932-1938 (2011). 

http://www.ncbi.nlm.nih.gov/pubmed/21905728

View FileTerentyeva et al.   Size: (4 KB)

 as presented by UbiQ on Keystone 2016

View FileTriple E poster    Size: (815.64 KB)

Hassiepin, U., et al. A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine 110-glycine as substrate. Anal. Biochem. 371, 201-207 (2007). 

http://www.ncbi.nlm.nih.gov/pubmed/17869210

View FileU. Hassiepin et al.   Size: (4 KB)

Rodenko et al. Nat Prot 2006, 1, 1120

https://www.ncbi.nlm.nih.gov/pubmed/17406393 

 

Ekkebus et al. J. Am. Chem. Soc. 2013, 135, 2867

https://www.ncbi.nlm.nih.gov/pubmed/23387960

 

Sommer et al. Bioorg. Med. Chem. 2013, 21, 2511

https://www.ncbi.nlm.nih.gov/pubmed/23535560 

View FileUbiQ-077 references   Size: (4 KB)

Kane et al. J Cell Biol 2014, 205, 143-153. 

https://www.ncbi.nlm.nih.gov/pubmed/24751536


Kazlauskaite et al. Biochem J 2014, 460, 127-139. 

https://www.ncbi.nlm.nih.gov/pubmed/24660806

 

Kondapalli et al. Open Biol 2012, 2, 120080. 

https://www.ncbi.nlm.nih.gov/pubmed/22724072

 

Koyano et al. Nature 2014, 510, 162-166. 

https://www.ncbi.nlm.nih.gov/pubmed/24784582

 

V. Sauve and K. Gehring Cell Res 2014, 24, 1025. 

https://www.ncbi.nlm.nih.gov/pubmed/24946738

 

Spratt et al. Nat Commun 2013, 4, 1983. 

https://www.ncbi.nlm.nih.gov/pubmed/23770917

 

Trempe et al. Science 2013, 340, 1451.

https://www.ncbi.nlm.nih.gov/pubmed/23661642

 

T. Wauer and D. Komander EMBO J 2013, 32, 2099-2112. 

https://www.ncbi.nlm.nih.gov/pubmed/23727886

 

Yamamoto et al. J Biol Chem 2005, 280, 3390-3399. 

https://www.ncbi.nlm.nih.gov/pubmed/15557340

 

El Oualid et al. Angew Chem Int Ed 2010, 49, 10149. 

https://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileUbiQ-089 references   Size: (4 KB)

Kane et al. J Cell Biol 2014, 205, 143-153. 

https://www.ncbi.nlm.nih.gov/pubmed/24751536

 

Kazlauskaite et al. Biochem J 2014, 460, 127-139. 

https://www.ncbi.nlm.nih.gov/pubmed/24660806

 

Kondapalli et al. Open Biol 2012, 2, 120080. 

https://www.ncbi.nlm.nih.gov/pubmed/22724072

 

Koyano et al. Nature 2014, 510, 162-166. 

https://www.ncbi.nlm.nih.gov/pubmed/24784582

 

V. Sauve and K. Gehring Cell Res 2014, 24, 1025. 

https://www.ncbi.nlm.nih.gov/pubmed/24946738

 

Spratt et al. Nat Commun 2013, 4, 1983. 

https://www.ncbi.nlm.nih.gov/pubmed/23770917

 

Trempe et al. Science 2013, 340, 1451.

https://www.ncbi.nlm.nih.gov/pubmed/23661642

 

T. Wauer and D. Komander EMBO J 2013, 32, 2099-2112. 

https://www.ncbi.nlm.nih.gov/pubmed/23727886

 

Yamamoto et al. J Biol Chem 2005, 280, 3390-3399. 

https://www.ncbi.nlm.nih.gov/pubmed/15557340

 

El Oualid et al. Angew Chem Int Ed 2010, 49, 10149. 

https://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileUbiQ-091 references   Size: (4 KB)

Bennetzen et al. Mol Cell Proteomics 2010, 9, 1314. 

https://www.ncbi.nlm.nih.gov/pubmed/20164059

 

Bian et al. J Proteomics 2014, 96, 253. 

https://www.ncbi.nlm.nih.gov/pubmed/24275569

 

Kettenbach et al. Sci Signal, 2011, 4, rs5. 

https://www.ncbi.nlm.nih.gov/pubmed/21712546

 

Sharma et al. Cell Rep 2014, 8, 1583. 

https://www.ncbi.nlm.nih.gov/pubmed/25159151

 

Zhou et al. J Proteome Res 2013, 12, 260. 

https://www.ncbi.nlm.nih.gov/pubmed/23186163

 

El Oualid et al. Angew Chem Int Ed 2010, 49, 10149. 

https://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileUbiQ-092 references   Size: (4 KB)

Bennetzen et al. Mol Cell Proteomics 2010, 9, 1314. 

https://www.ncbi.nlm.nih.gov/pubmed/20164059

 

Bian et al. J Proteomics 2014, 96, 253. 

https://www.ncbi.nlm.nih.gov/pubmed/24275569

 

Kettenbach et al. Sci Signal, 2011, 4, rs5. 

https://www.ncbi.nlm.nih.gov/pubmed/21712546

 

Sharma et al. Cell Rep 2014, 8, 1583. 

https://www.ncbi.nlm.nih.gov/pubmed/25159151

 

Zhou et al. J Proteome Res 2013, 12, 260. 

https://www.ncbi.nlm.nih.gov/pubmed/23186163

 

El Oualid et al. Angew Chem Int Ed 2010, 49, 10149. 

https://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileUbiQ-093 references   Size: (4 KB)

Bennetzen et al. Mol Cell Proteomics 2010, 9, 1314. 

https://www.ncbi.nlm.nih.gov/pubmed/20164059

 

Bian et al. J Proteomics 2014, 96, 253. 

https://www.ncbi.nlm.nih.gov/pubmed/24275569

 

Kettenbach et al. Sci Signal, 2011, 4, rs5. 

https://www.ncbi.nlm.nih.gov/pubmed/21712546

 

Sharma et al. Cell Rep 2014, 8, 1583. 

https://www.ncbi.nlm.nih.gov/pubmed/25159151

 

Zhou et al. J Proteome Res 2013, 12, 260. 

https://www.ncbi.nlm.nih.gov/pubmed/23186163

 

El Oualid et al. Angew Chem Int Ed 2010, 49, 10149. 

https://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileUbiQ-094 references   Size: (4 KB)

Bennetzen et al. Mol Cell Proteomics 2010, 9, 1314. 

https://www.ncbi.nlm.nih.gov/pubmed/20164059

 

Bian et al. J Proteomics 2014, 96, 253. 

https://www.ncbi.nlm.nih.gov/pubmed/24275569

 

Kettenbach et al. Sci Signal, 2011, 4, rs5. 

https://www.ncbi.nlm.nih.gov/pubmed/21712546

 

Sharma et al. Cell Rep 2014, 8, 1583. 

https://www.ncbi.nlm.nih.gov/pubmed/25159151

 

Zhou et al. J Proteome Res 2013, 12, 260. 

https://www.ncbi.nlm.nih.gov/pubmed/23186163

 

El Oualid et al. Angew Chem Int Ed 2010, 49, 10149. 

https://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileUbiQ-095 references   Size: (4 KB)

Bennetzen et al. Mol Cell Proteomics 2010, 9, 1314. 

https://www.ncbi.nlm.nih.gov/pubmed/20164059

 

Bian et al. J Proteomics 2014, 96, 253. 

https://www.ncbi.nlm.nih.gov/pubmed/24275569

 

Kettenbach et al. Sci Signal, 2011, 4, rs5. 

https://www.ncbi.nlm.nih.gov/pubmed/21712546

 

Sharma et al. Cell Rep 2014, 8, 1583. 

https://www.ncbi.nlm.nih.gov/pubmed/25159151

 

Zhou et al. J Proteome Res 2013, 12, 260. 

https://www.ncbi.nlm.nih.gov/pubmed/23186163

 

El Oualid et al. Angew Chem Int Ed 2010, 49, 10149. 

https://www.ncbi.nlm.nih.gov/pubmed/21117055

View FileUbiQ-113 references   Size: (4 KB)

Terentyeva et al. Bioconj. Chem. 2011, 22, 1932.

https://www.ncbi.nlm.nih.gov/pubmed/21905728

 

Hassiepen et al. Analyt. Biochem. 2007, 371, 201.

https://www.ncbi.nlm.nih.gov/pubmed/17869210

View FileUbiQ-127 references   Size: (4 KB)

Chojnacki et al. Cell Chemical Biology 2017, 24, 443.

https://www.ncbi.nlm.nih.gov/pubmed/28330605

View FileUbiQ-154 references   Size: (4 KB)

Albrow et al. Chem Biol 2011, 18, 722.

https://www.ncbi.nlm.nih.gov/pubmed/21700208

 

Mendes et al. Biochim Biophys Acta - Mol Cell Res 2016, 1863, 139.

https://www.ncbi.nlm.nih.gov/pubmed/26522917

View FileUbiQ-156 references   Size: (4 KB)

Mulder et al. Nat. Chem. Biol. 2016, 12, 523. 

https://www.ncbi.nlm.nih.gov/pubmed/27182664

 

MPC Mulder, F. El Oualid and H. Ovaa. Adenylation enzyme inhibitors. Application WO/2016/032332 and NL2015/050596

View FileUbiQ-158 references   Size: (4 KB)

Raasi et al Methods Mol Biol. 2005, 301, 47.

https://www.ncbi.nlm.nih.gov/pubmed/15917625

 

Valkevich et al. J Am Chem Soc. 2012, 134, 6916.

https://www.ncbi.nlm.nih.gov/pubmed/22497214

View FileUbiQ-174 references   Size: (4 KB)

Raasi et al Methods Mol Biol. 2005, 301, 47.

https://www.ncbi.nlm.nih.gov/pubmed/15917625

 

Valkevich et al. J Am Chem Soc. 2012, 134, 6916.

https://www.ncbi.nlm.nih.gov/pubmed/22497214

View FileUbiQ-175   Size: (4 KB)

Raasi et al Methods Mol Biol. 2005, 301, 47.

https://www.ncbi.nlm.nih.gov/pubmed/15917625

 

Valkevich et al. J Am Chem Soc. 2012, 134, 6916.

https://www.ncbi.nlm.nih.gov/pubmed/22497214

View FileUbiQ-176 references   Size: (4 KB)

Raasi et al Methods Mol Biol. 2005, 301, 47.

https://www.ncbi.nlm.nih.gov/pubmed/15917625

 

Valkevich et al. J Am Chem Soc. 2012, 134, 6916.

https://www.ncbi.nlm.nih.gov/pubmed/22497214

View FileUbiQ-177 references   Size: (4 KB)

Raasi et al Methods Mol Biol. 2005, 301, 47.

https://www.ncbi.nlm.nih.gov/pubmed/15917625

 

Valkevich et al. J Am Chem Soc. 2012, 134, 6916.

https://www.ncbi.nlm.nih.gov/pubmed/22497214

View FileUbiQ-178 references   Size: (4 KB)

Raasi et al Methods Mol Biol. 2005, 301, 47.

https://www.ncbi.nlm.nih.gov/pubmed/15917625

 

Valkevich et al. J Am Chem Soc. 2012, 134, 6916.

https://www.ncbi.nlm.nih.gov/pubmed/22497214

View FileUbiQ-179 references   Size: (4 KB)

Raasi et al Methods Mol Biol. 2005, 301, 47.

https://www.ncbi.nlm.nih.gov/pubmed/15917625

 

Valkevich et al. J Am Chem Soc. 2012, 134, 6916.

https://www.ncbi.nlm.nih.gov/pubmed/22497214

View FileUbiQ-180 references   Size: (4 KB)

Walczak, H., et al. Generation and physiological roles of linear ubiquitin chains. BMC Biol. DOI:10.1186/1741-7007-10-23 (2012).

http://www.ncbi.nlm.nih.gov/pubmed/22420778

View FileWalczak et al.   Size: (4 KB)

Wang, T., et al. Biotin-ubiquitin tagging of mammalian proteins in Escherichia coli. Protein Expr. Purif. 30, 140-149 (2003). 

http://www.ncbi.nlm.nih.gov/pubmed/12821332

View FileWang et al.   Size: (4 KB)

Weber, A., et al. A Linear Diubiquitin-Based Probe for Efficient and Selective Detection of the Deubiquitinating Enzyme OTULIN Cell Chem Biol2017 DOI: http://dx.doi.org/10.1016/j.chembiol.2017.08.006 

https://www.ncbi.nlm.nih.gov/pubmed/28919039

View FileWeber et al   Size: (4 KB)

White, E.H., et al. Amino analogs of firefly luciferin and biological activity thereof. J. Am. Chem. Soc. 88, 2015-2019 (1966).

http://pubs.acs.org/doi/abs/10.1021/ja00961a030?journalCode=jacsat&

 

 

View FileWhite, E.H., et al.   Size: (4 KB)

Wrigley, J.D. et al. Enzymatic characterisation of USP7 deubiquitinating activity and inhibitionCell Biochem. Biophys. 60, 99-111 (2011)

http://www.ncbi.nlm.nih.gov/pubmed/21468692

View FileWrigley et al.   Size: (4 KB)